Search results for "molecular junction"

showing 2 items of 2 documents

Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature

2021

This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling…

Density matrixQuantum dynamicsmolecular junction; non-Hermitian quantum mechanics; open quantum system dynamics; quantum thermodynamics; Quantum Physics; Quantum Physics; 80M99 81-08 81-10 81P99General Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics02 engineering and technology01 natural sciencesArticle81-1003.67.PpQuantum stateQuantum mechanicslcsh:QB460-4660103 physical sciences80M9931.15.xglcsh:Science010306 general physicsQuantum thermodynamicsQuantumnon-Hermitian quantum mechanicsQuantum tunnelling05.30.-dPhysicsQuantum PhysicsOperator (physics)80M99 81-08 81-10 81P9981-08021001 nanoscience & nanotechnologyopen quantum system dynamicslcsh:QC1-99981P99Phase space05.60.Ggquantum thermodynamicslcsh:Q0210 nano-technologyQuantum Physics (quant-ph)molecular junctionlcsh:Physics02.60.Cb
researchProduct

Image charge dynamics in time-dependent quantum transport

2012

In this work we investigate the effects of the electron-electron interaction between a molecular junction and the metallic leads in time-dependent quantum transport. We employ the recently developed embedded Kadanoff-Baym method [Phys. Rev. B 80, 115107 (2009)] and show that the molecule-lead interaction changes substantially the transient and steady-state transport properties. We first show that the mean-field Hartree-Fock (HF) approximation does not capture the polarization effects responsible for the renormalization of the molecular levels neither in nor out of equilibrium. Furthermore, due to the time-local nature of the HF self-energy there exists a region in parameter space for which …

PhysicsCondensed matter physicsMolecular junctionCondensed Matter - Mesoscale and Nanoscale Physicsta114FOS: Physical sciencesBiasingParameter spaceCondensed Matter PhysicsPolarization (waves)Method of image chargesElectronic Optical and Magnetic MaterialsSettore FIS/03 - Fisica della MateriaRenormalizationQuantum transportMesoscale and Nanoscale Physics (cond-mat.mes-hall)Moleculequantum transport
researchProduct